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Abstract

The stability of the helical flow in a system of coaxial rotating conical cylinders, the inner one rotating and the outer

one stationary was experimentally investigated. The helical flow resulted from a Hopf bifurcation, which occurred only

when the acceleration of the inner conical cylinder was smaller than 0.06 rad/s2. When the rotational speed of the inner

conical cylinder was increased, the transition to turbulence occurred following a succession of flow states: (i) three-

dimensional laminar flow (TDLF), (ii) laminar periodic helical flow (LPHF), (iii) doubly periodic wavy helical flow

(DWHF), (iv) weakly turbulent helical flow (WTHF) and (v) fully turbulent helical flow (FTHF). Time series obtained

by an electrochemical method permitted the identification and analysis of the fundamental frequencies and their

evolutions associated with each time-dependent flow state, using Fourier and wavelet transforms. Phase space analysis

revealed the associated attractors constructed from the embedded time series. In the FTHF flow state, the fundamental

frequency of the helical flow was observed to have a ratio to the rotational frequency of almost twice that of the one

measured in the LPHF regime.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decade, Taylor vortices in the flow between two coaxial rotating conical cylinders have been studied both

experimentally and numerically by several authors. Wimmer (1995) investigated the occurrence of Taylor vortices in

different gap configurations between conical cylinders. He also observed unsteady flow modes, depending on the flow

history, which led to helical flows propagating from the largest radius to the smallest when the inner conical cylinder

was rotated and the outer one was fixed. Noui-Mehidi and Wimmer (1999) studied the flow states occurring in the

presence of a free surface in the same flow system. They obtained a combination of unsteady flow modes, which were

only observed in the Taylor–Couette system when both cylinders were rotating in opposite directions. In a numerical

analysis, Hoffmann and Busse (1999) showed that a transition from Taylor vortex instabilities to Ekman-type

instability occurred at a cone angle of 451. Wimmer (2000) confirmed this result by a series of experiments using

different conical systems. Noui-Mehidi et al. (2001) analyzed the effect of the acceleration rate b of the inner conical

cylinder on the different flow modes observed when the Reynolds number, Re, was increased. A flow map plotted in the

(Re, b) plane clearly showed the existence of a bifurcation branching occurring after the first Taylor vortices were
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

a wavelet transform dilatation parameter

C wavelet transform ð¼ �ð1=
ffiffiffi
a

p
Þ
Rþ1

�1

cððt � tÞ=aÞsðtÞ dtÞ

d gap width

DWHF doubly periodic wavy helical flow

f1 helical motion fundamental frequency

f2 wavy motion fundamental frequency

fr inner conical cylinder rotation frequency

FTHF Fully turbulent helical flow

FTV first observed vortices

L fluid column height

LPHF Laminar periodic helical flow

Re Reynolds number ð¼ RihOd=nÞ
Rih inner conical cylinder upper radius

Roh outer conical cylinder upper radius

s(t) normalized fluctuation component of the

signal ð¼ ðSðtÞ � SmeanÞ=SDÞ

S(t) total recorded signal

Smean mean component of the signal

SD standard deviation of the signal

t time

Dt sampling time

T embedding time delay

TDLF basic three-dimensional laminar flow

UTV upward traveling motion

WTHF weakly turbulent helical flow

Greek letters

b acceleration rate

G aspect ratio ( ¼ L/d)

Z radius ratio ( ¼ Rih/Roh)

n dynamic viscosity

t wavelet transform time shift

f conical apex angle

c mother ‘‘Mexican hat’’ waveletð¼ ð1� t2Þ

expð�t2=2ÞÞ
O inner conical cylinder angular rotational

speed (¼ bt)
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observed, depending on the values of b and Re. On the first branch, a helical flow was observed for acceleration rates

bo0:06 rad=s2; and it initiated always at the largest radius. On the second branch, for b40:06 rad=s2; a succession of

other flow modes was observed. Noui-Mehidi et al. (2002) studied the flow mode selection following the second

bifurcation branch, which resulted in an upward travelling flow, followed by steady Taylor vortices and wavy Taylor

vortices when Re was increased.

Helical and spiral structures have been observed in a Taylor–Couette system when both cylinders were counter-

rotating. Andereck et al. (1986) identified a succession of different flow states during the transition to turbulence. They

classified the flow states resulting from spiral-type instability as interpenetrating laminar spirals, wavy interpenetrating

spirals, an intermittency region, a transition region and, finally spiral turbulence. Nonlinear spirals have been

numerically studied in a Taylor–Couette system by several authors (Antonijoan et al., 1998; Hoffmann and Lücke,

2000; Meseguer and Marquès, 2000). These studies pointed out the complexity of this flow state in circular cylinder

systems and its dependency on different dynamical and geometrical parameters.

The present work is concerned with an experimental investigation of the transition to turbulence of the helical flow

observed between conical cylinders following the first bifurcation branch, as described above (for bo0:06 rad=s2). The
flow properties were investigated by Fourier and wavelet analysis of time series recorded for the different observed

flows. Dynamical analysis of the time series permitted the identification of the type of bifurcations leading to

turbulence.
2. Experimental procedures

2.1. Experimental set-up

The experimental apparatus consisted of two concentric conical cylinders, the inner one was set in rotating motion,

while the outer one was at rest. The outer conical cylinder was made of transparent acrylic plastic and the inner conical

cylinder of stainless steel (Fig. 1). The upper radii of the inner and outer bodies were equal to Rih ¼ 42mm and

Roh ¼ 50mm; respectively. Both conical cylinders had the same apex angle of f ¼ 161; with the resulting constant gap

width d ¼ 8mm: At the top of the flow system, the radius ratio was Z ¼ Rih=Roh ¼ 0:84; and the system aspect ratio was

G ¼ L=d ¼ 15:62; where L is the fluid column vertical length. The top end-plate was attached to the apparatus lid and

the bottom end-plate was fixed to the outer conical cylinder. The basic working fluid was an aqueous solution, as will be

discussed in the following section. For the purpose of flow visualization, 2% of Kalliroscope AQ 1000 was added to the
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Fig. 1. Experimental apparatus and notations (dimensions in mm).
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working fluid. The flow could be observed by both Argon laser cross-section illumination and direct reflected white

light.

The inner conical cylinder was able to reach very high rotational speeds by means of a computer-controlled DC

motor. The rotational speed was increased linearly following OðtÞ ¼ bt; where O is the angular velocity, t is time and b
the acceleration rate. The Reynolds number, estimated with an accuracy better than 2.5%, has been defined at the upper

base for the largest radius as

Re ¼
RihOd

n
, (1)

where n is the fluid kinematic viscosity and O is the rotational speed of the inner conical cylinder.

2.2. Measuring method

Polarography was used to study the local flow properties in the present investigation. This electrochemical method

has been adapted to the study of Taylor–Couette flow systems since the early 1970s by Cognet (1971). The method is

based on a simple model of mass transfer. By imposing a potential to the measuring electrode probe that is different

from the one of the electrolyte oxydo-reduction equilibrium, the probe active surface in contact with the solution

becomes the site of ion exchange. The motion of the ions is the result of the migration motion due to the electrical field,

the convection of the flow circulation and the molecular diffusion due to the difference of concentrations between the

solution and the electrode. The local current collected at the electrode is proportional to the gradient of the velocity field

at the electrode.
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The electrolyte used in the present investigation was an aqueous solution of ferri-potassium cyanide at a

concentration of 10�2mol/L and ferro-potassium cyanide at an equal concentration of 10–2mol/L. The addition of an

excess of an inactive electrolyte, namely potassium nitrate, at a concentration of 1mol/L permitted the elimination of

ion migration in the solution. The motion of ions was then due only to flow convection. The addition of the

Kalliroscope AQ 1000 for flow observation increased the fluid kinematic viscosity by only 2%. On the other hand,

the Kalliroscope was neutral to the electrochemical solution, thus both flow visualization and signal analysis could be

conducted simultaneously. The experimental room was air-conditioned to keep the temperature constant at 25 1C. The

controlled long-term room temperature variations were lower than 0.5 1C for all measurement sequences. In order to

ensure the accuracy of the working fluid temperature, a thermocouple of copper-constantan, which had an accuracy of

better than 0.1 1C, was used. The fluid temperature was measured before and after each experiment and was found to

vary by no more than 1 1C. The fluid kinematic viscosity n was found to be 0.97 cS at 25 1C.

A total of nine platinum micro-electrodes of 0.5mm diameter each were used in the present investigation. The

electrodes were set along a vertical line on the inner side of the outer conical cylinder wall. The first top electrode was

located 20mm lower than the top end-plate and the last electrode was located 26mm above the bottom end-plate to

avoid end-plate effects. All electrodes were separated from each other, two by two, by an equal interval of 10mm. The

anode was a square platinum plaque of 15� 15mm fixed to the inner side of the outer conical cylinder near the

apparatus lid. The difference of potential was imposed by the use of a DC battery between the anode and the cathode

subject to measurement. The potential drop at the ends of a resistance connected to the cathode was amplified with a

YOKOGAWA 3133 DC amplifier and then recorded via a TEAC DR-F3 digital recorder where the signal could be

visualized on screen. The sampling frequency and the number of recorded samples were set on the digital recorder unit.

A total of 4096 readings were recorded for each time-series sample with different sampling frequencies, depending on

the nature of the signal related to the observed flow state. When the desired Reynolds number was reached, signal

measurements were done after a time equivalent to 100 times the acceleration duration. The steady state could be

assessed when the same statistically mean current and the same spectral properties were obtained for each of the

sampled time series collected at the same flow regime.

2.3. Signal analysis

Time series collected at the electrode were analyzed by Fourier transform, wavelet transform and reconstruction of

attractors in phase space. The signal analysis was performed on the normalized fluctuating component of each recorded

time series following the equation:

sðtÞ ¼
SðtÞ � Smean

SD
, (2)

where S(t) is the total signal recorded, Smean is the mean component of the signal, and SD is the conventional standard

deviation.

The power spectra obtained by an FFT algorithm permitted the determination of the characteristic frequencies

related to each of the flow states observed.

Wavelet analysis has been recently introduced as an alternative to Fourier transform. While Fourier analysis yields

the energy density in individual frequency ranges without estimation with time, wavelet analysis permits the tracking of

the spatio-temporal evolution of the signal in various time scales. The wavelet transform of continuous signal s(t) is

given by

Cðt; aÞ ¼ �
1ffiffiffi
a

p

Z þ1

�1

c
t � t

a

� �
s tð Þ dt, (3)

where c is the mother wavelet, which is an absolutely integrable function. Wavelet analysis is performed by the

dilatation and translation of the mother wavelet. The parameter a is related to the dilatation and t is the time-shift
parameter. In the present study the ‘Mexican hat function’ given by

cðtÞ ¼ 1� t2
� �

exp �
t2

2

� 	
(4)

was chosen as the mother wavelet. Zheng et al. (2001) showed that this mother wavelet was suitable for detecting

unsteady local fluctuations. Park et al. (2001) noted that the scaling in the wavelet analysis represents performing

stretching and compressing operations on the mother wavelet to detect the frequency information contained in the

signal. The compression operation permits the analysis of high-frequency components, while stretching is related to

low-frequency components. In the present study, the wavelet transforms are plotted in time-scale graphs where the
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wavelet coefficients are normalized by dividing them by the maximal wavelet coefficient value. The iso-correlations are

plotted in contour lines representing contour levels from 0 to 1 with an increment step of 0.1.

Embedding time series of the normalized fluctuation s(t) corresponding to a certain flow regime allowed the

identification of the associated attractor in the space phase. The process of embedding a signal s(t) corresponds to the

construction of a set of signals sðt þ TÞ; sðt þ 2TÞ; sðt þ 2TÞ; . . . ; sðt þ ðn � 1ÞTÞ shifted from the original signal s(t).

Although the definition of the time delay T is arbitrary, some methods have been proposed for the evaluation of T. The

method of mutual information proposed by Fraser and Swinney (1986) has been used in the present work to estimate

the time delay of each time series recorded to construct the associated attractor. In this method the appropriate time

delay is the one which corresponds to the first minimum value of the mutual information function I(t) defined by Fraser

and Swinney (1986). A Fortran algorithm based on the proposed method permitted the calculation of the time delays

for each measured time series. Poincaré sections were taken at the intersection of a specific plane and the constructed

attractor in the 3-D phase space defined by s(t), sðt þ TÞ and sðt þ 2TÞ:
3. Transition sequence

3.1. Basic flow and first instability

The variation of the centrifugal forces due to the axial change of the conical radii yields a nonuniform dynamical field

along the fluid column, even when the gap width is axially constant when both conical cylinders have the same apex

angle. This property has a major effect on the transition from the laminar state to turbulence since the basic laminar

flow (abbreviated as TDLF) is three dimensional.

Fig. 2 presents a diagram summarizing the different flow states obtained when the acceleration rate changes at the

first flow bifurcations. The first critical Reynolds number Rec ¼ 132 marked the birth at the top of the flow system of a

single vortex due to the combination of the predominant centrifugal forces and the Ekman layer at the top end-plate

where the radii were the largest. The basic meridional flow was upward along the rotating wall and downward along the

fixed one. The first observed vortex rotated inwards to the upper end-plate and formed with the basic flow a pair of
Fig. 2. Bifurcation diagram presenting flow state selection when the acceleration rate changes in the range of Re/Rec lower than 8.00.

TDLF is the basic three-dimensional flow state, FTV is the state with the first observed vortices, and UTV is the flow state with upward

traveling vortices.
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counter-rotating vortices. When the inner conical cylinder rotational speed was increased slightly, counter-rotating

vortex pairs appeared below the first observed vortex until they occupied almost three-quarters of the fluid column. This

flow state is denoted by FTV in Fig. 2.

Depending on the acceleration rate b imposed, transition branching occurred when Re was increased. For values of

b40:06 rad=s2; the first observed vortices moved upward in a global motion (UTV state in Fig. 2) and filled the whole

fluid column, leading to Taylor vortex flow modes when the Reynolds number was further increased, as discussed by

Noui-Mehidi et al. (2002). For low acceleration rates of bo0:06 rad=s2; a helical flow propagated downward from the

largest radius to the lowest one at a Reynolds number of Re=Rec ¼ 1:47:
3.2. Laminar helical flow

As stated in the previous section, the helical flow (denoted by LPHF) settled at Re=Rec ¼ 1:47 for very low

accelerations of bo0:06 rad=s2: This flow structure is characterized by a pair of counter-rotating vortex tubes winding

around the inner conical cylinder. To a stationary observer, the helical vortices, counter-rotating two by two, have a

downward motion from the largest radius to the lowest one in the conical system.

Fig. 3 shows a front view and a laser section of the helical flow for Re=Rec ¼ 1:52: It can be seen from the laser

section in Fig. 3(b) that the helical counter-rotating vortices have the same size within the gap. The front view in Fig.

3(a) shows that the helical vortices are inclined to the horizontal plane with a very small angle of 41. The rotation of the

helical structure around the inner conical cylinder acts like a coil to produce a ‘barber-pole’ effect on the vortices, with a

constant velocity for a fixed Re. In the present flow system, the inner conical cylinder had a counterclockwise rotation,

resulting in left-hand inclined helical vortices.

The signals collected for this flow state were periodic. The periodicity was the result of the downward axial drifting

velocity of the helical vortices at the observation point, which is the measuring probe. At this flow state, due to the

nature of the hydrodynamic structure observed, signals measured at all existing electrochemical probes showed similar
Fig. 3. Laminar periodic helical flow (LPHF): (a) front view, (b) Argon laser section view; Re=Rec ¼ 1:52:
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Fig. 4. Power spectrum in LPHF for Re=Rec ¼ 2:70:
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time evolution and spectral properties. The results presented in the following correspond to measurements done at the

probe located near the middle of the fluid column.

An adequate amplification raised the signal amplitude to a level that could be clearly visualized as a waveform on the

digital recorder display. The power spectra obtained from the time series showed the single-periodic nature of the helical

flow, as seen in Fig. 4 for Re=Rec ¼ 2:70: All power spectra collected revealed a sharp fundamental frequency f1 peak

with some harmonics. The fundamental frequency f1 is related to the constant period of the measured signal due to the

regular passage of the helical vortices by the measuring probe. When an outflow boundary passed near the measuring

probe, the amplitude of the signal reached a maximum; then, when the following inflow boundary passed near the

probe, the signal amplitude reached a minimum value.

When Re was increased further, the axial drifting velocity of the helical vortices became faster. The power spectra

obtained at different Reynolds numbers for this flow regime showed that f1 had a ratio of 0.36 to the inner conical

cylinder rotation frequency, with an accuracy of 5%. This ratio was independent of the acceleration imposed on the

inner cylinder rotation, as long as bo0:06 rad=s2: The effect of acceleration only seemed to be important at the onset of
the helical flow.
3.3. Doubly periodic wavy helical flow

When Re was further increased, the axial velocity of the helical flow became faster. Visually, it was difficult to clearly

discern the structure of the helical vortices. The signal analysis indicated a change in the helical flow at Re=Rec ¼ 4:90:
The raw signals were still periodic, with a change in the waveform showing other small fluctuations due to the presence

of azimuthal undulations superimposed to the helical motion. While direct visualization of these undulations was

difficult, a video recorded with a digital camera and played in slow motion clearly showed the azimuthal waves, which

translated the undulation of the counter-rotating helical vortices boundaries in the azimuthal direction with very small

amplitudes, while moving downwards.

The power spectra collected contained the fundamental frequency f1with its harmonics and a second fundamental

frequency f2 with several peaks resulting from combinations of f1 and f2, as can be seen in Fig. 5.

The presence of a second fundamental frequency f2 is related to the azimuthal wavy motion superimposed to the

helical downward flow. The appearance of the frequency f2 at a value higher than the fundamental frequency f1 (Fig. 5)

is supported by the wavelet analysis of the collected time series in this flow state. The iso-correlation contour plots in
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Fig. 6 show that there are two main structures: at time scales a=Dt between 8.5 and 10.5, the regular high correlation

form corresponds to the fundamental helical flow of f1. While at time scales a=Dt between 3.5 and 5.5 (i.e. higher

frequencies) a second correlation waveform appears to be weak with regard to the previous one. The second correlation

waveform corresponds to the azimuthal waves with f2 attached to the helical flow.

Fig. 6 reveals also a competition between the azimuthal waves and the helical motion since the temporal evolution of

the second correlation waveform, appearing at time scales a=Dt between 3.5 and 5.5, is not steady. On the other hand,

the presence of a multitude of frequency peaks resulting from combinations of f1 and f2 (Fig. 5) translated a constant

offset of f2-related peaks from the main fundamental frequency f1. This property is due to the combination of the helical

motion and the azimuthal undulations at the measuring fixed probe. In fact, the probe does not observe the azimuthal

undulations at the same helical vortex but at a succession of helical vortices due to the downward axial drifting of the
Fig. 5. Power spectrum in DWHF for Re=Rec ¼ 4:90:

Fig. 6. Iso-correlation contour lines of the wavelet transform in DWHF for Re=Rec ¼ 4:90:
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helical motion. Thus, the constant offset of the peaks related to f2 from the corresponding f1 peak is the result of the

constant shift between portions of the azimuthal waves, each recorded at a helical vortex succeeding the previous one.

The frequency analysis showed that f2 had a rational ratio to the helical flow f1, as seen in the power spectrum of

Fig. 5, where f1 still has the same ratio of 0.36 to the inner conical cylinder frequency fr. The flow state (denoted by

DWHF) was then doubly periodic since the two fundamental frequencies f1 and f2 are independent.

Similar to the present flow regime, wavy-spiral regimes have been observed in the system of Taylor–Couette between

circular cylinders. Chossat and Ioos (1994) found theoretically that this flow regime is the result of bifurcation solutions

from spirals when both cylinders counter-rotate. The wavy-spiral flow regime between circular cylinders is quasiperiodic

with two independent frequencies, the first linked to the basic spirals and the other one to the wavy motion. Andereck et

al. (1986) observed this flow state experimentally for counter-rotating circular cylinders and called it wavy

interpenetrating spirals. They also found that this flow state is not as well defined visually as the known wavy-vortex

flow. However, the power spectra they obtained in this flow state did not point out any frequency linked to the wavy

pattern.

3.4. Weakly turbulent helical flow

At a Reynolds number of Re=Rec ¼ 14:70; the frequency related to the azimuthal waves could not be seen any more

in the power spectra. The azimuthal waves disappeared completely, due to the strong downward helical flow and to the

additional presence of fluctuations of chaotic type. The power spectrum of Fig. 7 clearly illustrates this fact and shows

that this flow state corresponds to a weakly turbulent helical flow (WTHF). The power spectrum contains a lot of noise

and the helical flow fundamental frequency f1 is still preponderant in the spectrum, with only two remaining harmonics.

The fundamental frequency f1 has the same ratio of 0.36 to the inner conical cylinder rotation frequency in the range of

Re/Rec between 14.70 and 37.50. When Re was increased, the fluctuations became stronger. Power spectra collected

for Re=Rec437:50 showed that the ratio of f1 to the rotational frequency was not constant any more, and increased as

Re/Rec increased. This property is supported by the power spectra shown in Fig. 8 and the frequency evolution with Re/

Rec shown in Fig. 9. It can be seen from Fig. 9 that the continuous increases of the ratio f1/fr became very sharp for

Re/Rec between 49.70 and 66.50.

The increase of the frequency ratio f1/fr is due to the high competition between the basic helical motion and the

presence of flow fluctuations, which become stronger as the rotational speed of the inner conical cylinder increases. The
Fig. 7. Power spectrum in WTHF for Re=Rec ¼ 14:70:
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Fig. 8. Power spectra change in WTHF as Re/Rec increased.
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strong flow fluctuations favor the transfer of energy to small scales, which increase the spatial freedom of the flow

system and thus enhance the transportation energy of the helical wave.

3.5. Fully turbulent helical flow

The value of Re=Rec ¼ 66:50 marked the settling of a fully turbulent flow regime (abbreviated as FTHF).

Visually the flow seemed to be completely chaotic, with a very fast downward motion in which the boundaries

of the helical vortices could not be observed. Signal analysis revealed the existence of the fundamental helical train

with a high-frequency ratio f1/fr. Power spectra collected in the range Re/Rec between 66.50 and 118.30 have shown

that the ratio f1/fr reached another fixed value of 0.81, as supported by Fig. 9. An example of the turbulent
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Fig. 9. Evolution of the helical flow fundamental frequency f1 as the Reynolds number increases.

Fig. 10. Power spectrum in FTHF for Re=Rec ¼ 66:50:
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power spectra is shown in Fig. 10. A logarithmic representation pointed out a very sharp frequency f1 with only one

harmonic.

The contour plots of the wavelet transform iso-correlations shown in Fig. 11 indicate that the helical structure is not

temporally steady as previously seen in Fig. 6. Although high correlation forms are still observed at time scale a=Dt
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Fig. 11. Iso-correlation contour lines of the wavelet transform in FTHF for: (a) Re=Rec ¼ 66:50; (b) Re=Rec ¼ 88:70;
(c) Re=Rec ¼ 118:50:
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between 8.5 and 12.5, the forms are irregular in time, revealing the existence of a strong competition between the basic

helical flow and the chaotic fluctuations introducing other high correlation values.
4. Phase space analysis

The phase space study in bifurcation problems gives important information on the type of bifurcation that occurs in a

dynamical system when one or more dominant parameters are changed. The phase portraits constructed from the

normalized fluctuating component of the recorded signals permitted the identification of the type of bifurcation leading

to the succession of the different observed flow regimes.

In the LPHF regime, the attractor construction showed a pure limit cycle presented in Fig. 12(a), which suggests that

the helical flow transition occurred with a Hopf bifurcation type from the first observed vortices flow regime. A second

Hopf bifurcation occurred in the transition to the DWHF flow state. The attractor constructed from the time series

shown in Fig. 12(c) and the Poincaré section of Fig. 12(d) suggest that the orbit lies on the surface of a torus where the

dominating frequency is f1 and the second frequency is f2. This transition is similar to the one observed in the

Taylor–Couette system in the transition of singly periodic wavy-vortex flow to doubly periodic wavy-vortex flow, which

results from a Hopf bifurcation (Ohmura et al., 1995). The phase space analysis of the WTHF regime shows that the

torus does not exist anymore. Since the flow is dominated by the helical basic flow, the noise induced by the chaotic

fluctuations results in a noisy cycle, which is still evident. In the perturbed cycle, the orbits are continuously deviating
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Fig. 12. Phase space portraits (left) and Poincaré sections (right) and delay times T in: (a) and (b) LPHF, T ¼ 2:30; (c) and (d) DWHF,

T ¼ 1:80; (e) and (f) WTHF, T ¼ 1:34; (g) and (h) FTHF, T ¼ 1:28: The Poincaré planes are: (b) sðt þ 2TÞ ¼ 0; (d) sðtÞ ¼ 0;
(f) sðt þ 2TÞ ¼ 0 and (h) sðt þ TÞ ¼ 0:
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from the fundamental limit cycle corresponding to the basic helical flow, as seen in the phase portrait of Fig. 12(e) and

the Poincaré section of Fig. 12(f). The transition to the WTHF regime in the present study seems to be characteristic of

the conical flow system. While in the Taylor–Couette flow system the torus motion breaks up in the process to the

generation of chaotic turbulence, in the present system the torus motion breaks up to a kind of irregular limit cycle. An

increase of Reynolds number generates more chaotic fluctuations, leading to a fully turbulent flow (FTHF)

characterized by a strange attractor, as shown in Fig. 12(g) and the Poincaré section in Fig. 12(h).
5. Conclusions

The transition of laminar helical flow to turbulent helical flow in a system formed by two coaxial conical cylinders

was investigated experimentally. Signal analysis performed on time series recorded from fluctuations of the wall

gradient velocity revealed a transition scenario specific to the present flow system. When the Reynolds number was

increased, the singly periodic helical flow was replaced by a doubly periodic wavy helical flow, with two independent
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fundamental frequencies revealing the existence of a torus in the phase space. For higher Reynolds numbers, the wavy

flow disappeared due to the settling of fluctuations of chaotic type, and the flow degenerated to a fully turbulent

motion. The ratio of fundamental frequency to rotational frequency increased sharply before turbulent flow occurred.

The wavelet transform showed that the helical flow, still existing in the turbulent regime, was affected by fluctuations of

high order of magnitude. The present study and previous studies have shown that the flow between conical cylinders

revealed diversified routes towards chaos with characteristic properties that need further investigation both

experimentally and theoretically.
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